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Equation of state of the trans-Planckian dark energy and the coincidence problem
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Observational evidence suggests that our Universe is presently dominated by a dark energy component and
is undergoing accelerated expansion. We recently introduced a model, motivated by string theory for short-
distance physics, for explaining dark energy without appealing to any fine tuning. The idea of trans-Planckian
dark energy~TDE! was based on the freeze-out mechanism of the ultralow frequency modes,v(k), of very
short distances, by the expansion of the background universe,v(k)<H. In this paper we address the issue of
the stress-energy tensor for nonlinear short-distance physics and explain the need to modify Einstein equations
in this regime. From the modified Einstein equations we then derive the equation of state for the TDE model,
which has the distinctive feature of being continually time dependent. The explanation of the coincidence
puzzle relies entirely on the intrinsic time evolution of the TDE equation of state.
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I. INTRODUCTION

Cosmological observations of large scale structure, su
nova type 1a age of the Universe, and cosmic microw
background~CMB! data strongly indicate that the universe
dominated by a dark energy component with negative p
sure @1#. In addition to the difficulty of coming up with a
natural explanation for the smallness of the observed d
energy, an equal challenge is the ‘‘cosmic coincidenc
problem.

Recently we proposed a model@2# for explaining the ob-
served dark energy without appealing to fine-tuning or
thropic arguments. This model is based on the nonlinear
havior of trans-Planckian metric perturbation modes wh
was motivated by closed string theory@3,4# and quantum
gravity @5#. The trans-Planckian dark energy~TDE! model
was based on the freeze-out mechanism of the short-dist
modes with ultralow energy by the expansion of the ba
ground universe,H, and it naturally explained the smallne
of the observed dark energy.

In this paper we study the stress-energy tensor of the T
model in order to calculate the equation of state for th
short-distance stringy modes. As we will show, the froz
tail modes start having a negative pressure of the same o
as their positive energy density soon after the matter do
nation era. Thus it is only at low redshifts that they beco
important for driving the universe into an accelerated exp
sion and dominate the Hubble expansion rateH. A distinctive
feature of the TDE model is that its equation of state,wH , is
always strongly time dependent at any epoch in the evolu
of the universe~e.g.,wH521/3 during the radiation domi
nated era but it becomeswH521/2 at matter domination!. It
becomes increasingly negative at later times until it
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proaches the limiting valuewH521, after the matter domi-
nation time,teq .

The calculation of the components of the stress-ene
tensor, Tmn , namely, the pressure and energy density,
given in Sec. II. Due to the nonlinearity of short-distan
physics, the Bianchi identity is generically violated for a
these models. Therefore one needs to modify the Eins
equations, (Tmn), such that the modified ones satisfy the B
anchi identity. From physical considerations, the need
modifying Einstein equations in the nonlinear regime
short-distance physics is to be expected, due to noneq
brum dynamics of the short-distance modes. In pract
terms this is not easy to carry out in an unambiguous w
for a simple reason: we do not have a unique effective the
valid at trans-Planckian energies or a Lagrangian descrip
of the theory in this regime@6#. The only information avail-
able to most trans-Planckian models@7,2,8–12# is the field
equation of motion~with a few exceptions, see Ref.@13#!.
Nevertheless all these models do violate the Bianchi iden
and the energy conservation law, ifTmn is not modified ac-
cordingly.

Based on the equation of motion as our sole informat
for short-distance physics, we therefore use a kinetic the
approach@14# for modifying Einstein equations in the ab
sence of an effective Lagrangian description. The assump
made is that a kinetic theory description of the cosmologi
fluid is valid even in the trans-Planckian regime. Despite
nonlinear behavior at short distances, this imperfect fl
shares the same symmetries, namely, homogeneity and
ropy, as the background Friedmann-Robertson-Wal
~FRW! universe. Then the correctionstmn to the stress-
energy tensorTmn will also be of the diagonal form@15#

tmn5~ ē1P!umun1Pgmn . ~1!

In Sec. III we explore the observational consequences of
model with the puzzle of ‘‘cosmic coincidence’’ in mind. A
summary is given in Sec. IV. A discussion of the nonequ
©2003 The American Physical Society19-1
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M. BASTERO-GIL AND L. MERSINI PHYSICAL REVIEW D67, 103519 ~2003!
brum dynamics and distribution function for the tran
Planckian~TD! modes, as well as details of averaging th
energy and pressure, are presented in the Appendix.

II. THE EQUATION OF STATE FROM THE MODIFIED
EINSTEIN EQUATIONS

A. Analytical expression for Tµn

Trans-Planckian models that investigate the sensitivity
the cosmic microwave background~CMB! spectrum or
Hawking radiation to short-distance physics, all introduc
nonlinear, time-dependent frequency for the very short wa
length modes@2,7–10#:

v@p#5 f @p#5 f @k/a#. ~2!

The physical momentump is related to the comoving wav
numberk by p5k/a, with a the scale factor. Most of thes
models lack a Lagrangian description, and all the inform
tion they propose about short-distance physics is conta
in the mode equation of motion:1

@h1v~k,a!2#fk50. ~3!

The expectation that Einstein equations will not hold u
less they are modified in the nonlinear regime of sho
distance physics is fully reasonable and it is based on the
that the Bianchi identity and energy conservation law will
violated due to the nonlinear time dependence ofv. In terms
of kinetic theory, the time dependence of the group veloc
vg indicates departure from equilibrium@16# ~see the Appen-
dix!. Here we study the modifications ofTmn for a specific
class, the TDE model@2#. Our approach is based on kinet
theory and the pressure modifications are obtained thro
balance equations.

In the TDE model we are considering, the dispersed
quency for short-distance metric perturbation modes is

v2@p#5p2E @p/pc#5p2F e1

11u
1

e3u

~11u!2G , ~4!

u5exp@2p/pc#, ~5!

wherepc is of order of the Planck mass or string scaleM , p
is the physical momentum, ande i are arbitrary constants
The maximum ofv@p# is aroundp'pc . The frequency
function behaves as

v2@p#'p2@11O~p2/M2!#, p!M , ~6!

for the modes in the sub-Planckian regime, and as

1The v2 term collectively denotes the generalized frequency t
appears as a mass squared term in the equation. Depending
particular problem studied it may also include other terms such
for example, the coupling of the modes to the curvature of
universe,a9/a, if the equation under consideration is that of met
perturbations.
10351
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v2@p#'Ae11e3p2exp@22p/M #,p@M , ~7!

for those modes in the TP regime. The nonlinear exact fu
tion Eq. ~4! for the frequency can be fitted tov@p#2

;p2/(cosh@p/pc21#2).
Lorentz invariance is broken due to the nonlinearity

short distances. Therefore, thefixedcutoff scalepc5M , to-
gether with all the trans-Planckian modes pick apreferred
frame, the CMB frame. This frame is freely falling along th
comoving geodesics, with respect to the physical FR
Universe.2 Sometimes we will refer to trans-Planckia
modes as the modes inside a small box with fixed Pla
size,l p51/M , in the preferred frame, since their waveleng
lTP, l p is smaller that the ‘‘size of the box,’’p.M . In this
picture, Lorentz invariance is broken in the small box b
restored in the large box with sizeL5a/M , i.e, the Uni-
verse. Thus the physical momenta modes for the ‘‘sm
box’’ bound observers in the preferred frame are the com
ing wave number modes for the ‘‘outside’’ observers, in t
Lorentz invariant FRW Universe, that ‘‘see’’ the preferre
frame in a free fall.

Let us first address the issue of how the energy den
components behave with time, prior to the pressure mod
cations. We will refer to the wave packets of the modes c
tered around a momentumpi as particles. Then, their grou
velocity vg5dv/dp is time dependent through its nonline
p dependence, and is different from the phase velocity,vc
5v/p. Therefore, the short-distance modes are out of th
mal equilibrium, due to their nonlinear frequency and gro
velocity vgÞ1. Meanwhile a thermal state is restored
large scales, (l@ l P), where the frequency is nearly linea
and thusvg.1. Thus we need to average the contribution
the short-distance modes to the energy and pressure in
Universe, over many of their wavelengths, in order to obt
an effective large scale thermal state. That is why in obta
ing the equation of statêwi& for the trans-Planckian modes
prior to the pressure modificationsP i , the averaging is done
in time scales of cosmological order. Details of averaging
provided in the Appendix. The equation of state^wi& prior
to viscous pressure modifications is obtained fro
the expression ^wi&5^ p̄i&/^r i& with ^ p̄i&52^r i&
2^(a/3)dr i /da&, with a the scale factor. Based on the b
havior of vg with p, we divide the dispersion function into
four regions~see Fig. 1!:

Region 0: Linear regime, up top'pc , such thatv@p#
.p. These modes behave as radiation, Eq.~6!, with the av-
eraged pressure expressionp̄05r0/3.

Region I: Around the maximum of the dispersion fun
tion, up to some valuepB.M in physical momentum, where
v can be expanded in a polynomial series

v@p#'p@a01a1~p/M !1a2~p/M !21•••#, ~8!

whereai are constants (a2,0). Region I is dual to region 0
We use Eq.~8! to estimate the energy density
t
the
s,
e

2See Ref.@16# for a very nice treatment of issues related to a fix
physical cutoff in a preferred frame.
9-2
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r I.
C

a4EM

kB
dkk3Fa01a1

k

aM
1a2S k

aM D 2

1•••G
.

CM4

a4 Fa0

4
~xB

421!1
a1

5a
~xB

521!1•••G} M4

a4
, ~9!

where xB5kB /M.1, ^xB&5O(1). The constant C
5ubku2/(2p2) denotes the Bogoliubov coefficient square
which in our model does not depend on the wave numbk
@2#, with ubku2'exp(24pAe1). Therefore,r I behaves like
radiation plusO(1/a2) corrections in its averaged equatio
of state,̂ p̄I&5(1/32A/a21•••)^r I&. Regions I and 0 con-
tribute to the radiation energy component in the Universe

Region II: From some modepB@M onwards, defined
such that its frequencies can be best fitted to an expone
dependence onp, v@p#'p exp@2p/M#. The energy density
for this region is

r II .
C

a4EkB

kH
dkk3exp@22k/aM#5C

M4

a3
~F@xB#2F@xH# !,

~10!

where

F@xi #5S xi
3

2
1

3xi
2

4
1

3xi

4
1

3

8Dexp@22xi /a# ~11!

and xi5ki /M . SincexB.1 thenF@xB#. 1
2 xB

3exp@22xB /a#.
Thusr II behaves as matter when averaged over many o

FIG. 1. The dispersion function for the frequencyv@p# vs p.
The separation into four regions is based on the behavior of
group velocity. The ‘‘tail’’ is denoted by region ‘‘H.’’
10351
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lations and its averaged pressure3 is ^ p̄II &5(2B/a)^r II &
.0. Also sincexH.xB.1 thenF@xB#@F@xH#.

Region ‘‘H:’’ This is our ‘‘tail’’ @2#, defined as the part o
the graph for which the frequency of the modes is sma
than the Hubble parameter,H. The functional behavior of the
frequency withp is the same as in region II, therefore th
averaged pressure expression for this region is the sam
that of region II, that is,̂ p̄H&.0. But the lower limit of
integrationkH ~or pH) is given by the physical condition o
the freeze-out of the modes by the expansion of the ba
ground universe

vH@pH#5H. ~12!

This region includes the modes frompH to ` in the range in
which v is exponentially suppressed. The energy density
the tail is

rH.
C

a3

kH
3

2M3
exp@22kH /aM#. ~13!

Notice that due to the freeze-out, the evolution of thekH
mode is highly nontrivial and thus corrections to the av
aged pressure term̂p̄H&.0 will be important.

Modes in the tail, betweenpH to `, behave differently
from the other modes, since their time dependence is c
trolled by the Hubble expansion, Eq.~12!. On the other hand
all modes with momentap<pH redshift in the same way
with the scale factor, towards decreasing values, i.e, the
ear regime.4 Nevertheless, these regions~0,I,II! also receive
small modifications to their pressure term from the de
trans-Planckian regime. We show below that the modifi
tions due to thepH-defrosting effect are non-negligible an
important only in the highly nonlinear regime, aroundpH .

Now, we would like to estimate the corrections to pre
sure,P i , for all these regions, with the notationPi for the
effective modified pressure:

Pi→^ p̄i&1P i , ~14!

where the index runs toi 50, I, II, and H. The averaged
unmodified ‘‘bared’’ pressure expressions,^ p̄i&, are

^ p̄0,I&.S 1

3
2

A

a2
1••• D ^r0,I&, ~15!

^ p̄II ,H&.S 2
B

a
1••• D ^r II ,H&. ~16!

The inverse power terms ofa can be neglected andA, B are
numerical constants related to the averaging~see the Appen-
dix for details!.

3See the Appendix for details of averaging.
4Modes in the linear regime are referred to as ‘‘normal modes

e

9-3
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M. BASTERO-GIL AND L. MERSINI PHYSICAL REVIEW D67, 103519 ~2003!
In a similar manner to particle creation cases@17# in im-
perfect fluids@14,18#, the highly nontrivial time dependenc
of the modepH and the transfer of energy between regio
due to the defrosting of this mode across the boundarypH ,
give rise to pressure corrections in the fluid energy con
vation law. The defrosting of the modes results in a tim
dependent ‘‘particle number’’ for regions nearpH . From ki-
netic theory we know that this ‘‘particle creation’’~the
defrosting of the modes! gives rise toeffective viscous pres
sure modifications@14,18#. The termP i denotes the effective
viscous pressure modification to the ‘‘bare’’ pressure,^ p̄i&.

The criterion we use for modifyingTmn is that the Bianchi
identity must be satisfied@19# with the new expressions fo
pressure,5 Pi ,

S i@ ṙ i13H~r i1 p̄i1P i !#5S i@ ṙ i13H~r i1Pi !#50,
~17!

with i 50, I, II, and H. Let us write this expression explicitl
in terms of its energy and bare pressure components,
collect the contributions of regions 0 and I into one co
bined radiation energy,rR5r01r I :

ṙ II 13H~r II 1 p̄II !1 ṙR13H~rR1 p̄R!523HP II ,
~18!

ṙH13H~rH1 p̄H!523HPH ,
~19!

where p̄II ,H.0, p̄R.1/3. So, we have imperfect fluids i
regions II and H, and eventually their energy is transferr
due to the redshifting effect, to regions 0 and I, which is w
these regions also receive pressure modifications. Neve
less, the viscous pressure corrections to the ‘‘radiatio
modes are very small since the energy and the volume
phase space occupied by them is very large (a3 times larger
the Planck size volume!. These regions are in a nearly equ
librium situations~see the Appendix!.

Let us findP i , in order to solve Eqs.~18! and ~19!. As
explained, the presence ofP i is due to the exchange of en
ergy between the two regions, from the defrosting of
modespH at the boundary. This is directly related to the tim
dependence of the boundarypH , which in turn is going to be
controlled by the Hubble parameterH. In essence, there is a
exchange of modes between regions (R1 II) and H. Al-
though the specific number of particles6 in each of these
regions,NII andNH , is not conserved, their rate of chang
in the physical FRW Universe, is related through the cons
vation of the total number of particles which contains both
these components,

ṄT50. ~20!

5From here on we drop thê•••& notation and denote the ave

aged ‘‘bare’’ pressure simply byp̄i instead of̂ p̄i&.
6We are loosely using the term particle here to refer to the w

packets of the trans-Planckian modes, centered around a mom
pi .
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Each component satisfies7

ṄII 5G II NII , ~21!

ṄH5~3H2GH!NH , ~22!

where the ‘‘decay rates’’ of the regionsG i account for the
rate of change in the number of their ‘‘particles’’~modes!,
due to the defrosting effect.

The system is not yet in equilibrium. The change in t
number of ‘‘particles’’ gives rise to the effective viscou
pressureP i . Even prior to the freeze-out effects, that i
even forGH,II 50, the short-distance modes in regions II a
III were out of thermal equilibrium, due to their nonlinea
frequency and group velocityvgÞ1.

The contribution terms to pressure,P i , are related toG i
through@14,18#

3HPH52~rH1 p̄H!GH , ~23!

3HP II 52@~r II 1 p̄II !1~rR1 p̄R!#G II . ~24!

Therefore, Eq.~19! reduces to

ṙH1~3H2GH!~rH1 p̄H!50, ~25!

which can be also recast as

ṙH5
ṅH

nH
~rH1 p̄H!, ~26!

wherenH5NH/a3 is the ‘‘particle’’ number density for the
region of modes frompH to infinity. The flow of particles is
described bynH5nHua , with ua the unit four-velocity vec-
tor of the fluid. Notice that since the group velocity in the
region is negative, particles in this region flow in a directi
vg , opposite the direction of their momenta,k.

The number of ‘‘particles’’NH contained in the tail re-
gime, in its preferred frame, is given by

NH.CHE
kH

`

dkk2exp@2k/aM#.CH~aM!

3kH
2 exp@2kH /aM#, ~27!

whereCH5Nubku2 is a constant proportional to the Bogoliu
bov coefficientubku2, and we keep an overall normalizatio
constantN for the sake of generality. We can now calcula
the energy transfer, due to the defrosting of the modeskH ,
between the tail region and region II from the balance eq
tion for NH , Eq. ~22!, whereṄH is

e
nta

7Vector objects related to the flow direction of the fluid are d
noted in bold letters, e.g.,Ni5Niua , with ua the unit four-velocity
vector of the fluid and the corresponding modulus of this vectorNi .
Notice that the factor (3HNH) in Eq. ~22! is related to the fact tha
the preferred frame for the tail modes falls along comoving geo
sics in the Universe.
9-4
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EQUATION OF STATE OF THE TRANS-PLANCKIAN . . . PHYSICAL REVIEW D67, 103519 ~2003!
ṄH.CHE
kH

`

dkk2S k

aM Dexp@2k/aM#

2CHkH
2 exp@2kH /aM# k̇H

.3HNH2CHkH
2 exp@2kH /aM#~ k̇H2HkH!

.NHF3H1
kH /aM

kH /aM21
S Ḣ

H
D G . ~28!

In the last line we have used the approximation in Eq.~27!,
and

ṗH

pH
5

pH /M

12pH /M
S Ḣ

H
D , ~29!

derived from Eq.~12!. WhenpH@M ~which always holds!,
we have, forGH ,

GH.3H1
Ḣ

H
.3HS 12wtotal

2 D , ~30!

where we have defined

Ḣ

H
52

3

2
H~11wtotal!, ~31!

with wtotal5 p̄total /r total referring to the effective equatio
of state for the total energy density. Therefore, whenwtotal
→21 then GH reaches its limit,GH→3H. GH cannot
change anymore once this limit is reached because
Hubble constant and the modepH freeze to a time-
independent value. Notice thatGH is positive for all equa-
tions of statewtotal<1 and thus it slows down the dilution o
the tail with the scale factor. Thus, the increase in the num
of particlesNH as given byGH does not allow the energ
density of the ‘‘tail’’ to redshift as fast as matter. This ind
cates that although initially small,rH eventually will come to
dominate the total energy density.

We can repeat the same procedure for the modes in
gions 0, I, and II in order to obtain a closed equation
ṙR,II , similar to Eq.~25!, i.e., given entirely in terms ofrR,II

and p̄R,II ,

ṙ II ,R1~3H2G II !~r II ,R1 p̄II ,R!50, ~32!

where we have used Eq.~24!.
Let us now try to relateGH to G II . The total number of

not frozen particles,NII , in the region from zero tokH is
given by

NII .CH@4M31MpHvH#. ~33!

From the total balance equation for the particle num
between the two regions, (R1II ) and region H in the co-
moving volume, we haveṄtotal50, whereṄII 5G II NII and
NH5MpH

2 exp(2pH /M)u5MpHHu. Thus
10351
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G II 5
MpHH

4M31MpHH
~GH23H !, ~34!

andNT5NII 2CH(MpHvH)54CHM3. In obtaining the sca-
lar quantity for the number of particlesNT from their flow
NT, the negative sign picked up in the second term inNT is
related to the fact that the flow of the tail’s defrosted mod
is in the direction opposite to their momenta, due to th
negative group velocity. Therefore, by plugging in the e
pression ofNII from Eq. ~33!, we get that in the limitNII
@MpHH that G II is smaller thanGH and negative, given by
the expression

G II 52~3H2GH!
pH

4M

H

M
. ~35!

SincepHH2!M2H then y5pHH/(4M2).O(H/M ) is go-
ing to be much less than 1 for as long as the expansion is
dominated by the tail. From the conditionvH@pH#5H, and
the time evolution of the physical momentumpH in Eq. ~29!,
we have thatṗH /pH→2Ḣ/H, when pH@M . The exact
value ofy does not matter and it is small. Nevertheless,
pressure modificationP II slightly increases the dilution o
r II as determined by the equation forṙ II . The tail domina-
tion case, whenrH becomes comparable tor II , should be
treated separately sinceG II →0.

In this part we calculate the effective equation of state
all the regions, from the pressure expressions,p̄i , P i that
were obtained in the previous section. Starting with reg
H, and using Eqs.~19!, ~23! and ~30!, we have

ṙH

rH
5~GH23H !~11wH!52

3H

2
~11wtotal!~11wH!.

~36!

The ‘‘effective’’ equation of state for the tail can be rea
from this expression to be

11w̃H5
1

2
~11wtotal!~11wH!, ~37!

with wH.0. The time evolution forrH is

rH5rH~0!expF2
3

2E ~11wtotal!~11wH!d ln aG
5rH~0!expF23E ~11w̃H!d ln aG . ~38!

During radiation domination,wtotal51/3, then the effective
equation of state for the tail isw̃H521/3; for matter domi-
nation,wtotal50, thenw̃H521/2; at the start of the accel
erated expansion,q50, r II 5rH , we have wtotal5

21/3, w̃H522/3; and finally, if the tail dominates, then th
only solution to the Friedmann equation is given bywtotal

.w̃H , with w̃H521. Therefore, the tail starts to behave
9-5
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dark energy in only a short amount of time, when its eq
tion of statew̃H closely approaches the limiting value,w̃H
521.

By the same procedure, we can now estimate the effec
equation of state forr II in terms ofG II :

ṙ II

r II
5G II 23H523HF11S 12wtotal

2 D yG . ~39!

Thus the effective equation of state for region II, obtain
from Eq. ~39!, is

11w̃II 5S 11y
12wtotal

2 D ~11wII !, ~40!

wherey5(pH /M )(H/M )5O(H/M ) andwII .0.
The time evolution of ther II energy density component i

r II 5r II ~0!expF23E ~11w̃II !d ln aG . ~41!

In a radiation dominated universe (H/M )}(1/a2), and dur-
ing matter domination (H/M )}(1/a3/2). The point is that the
correctiony to the matter equation of state for region II
small at least for up to the equality time. During most of t
history of the Universe,y goes as an inverse power of th
scale factor a. So region II behaves much like matter. T
special era at which the tail eventually dominates the exp
sion and H becomes a constant~at pH5 const, w̃H5wtotal
521) is discussed below in Sec. III.

Similarly, by repeating the same steps, from Eq.~18!, it
can be shown that the modifications to pressure forrR , re-
gions 0 and I, are very small indeed. Thus their effect
equation of state remains very nearly that of radiation,w̃R
51/3. In order to avoid repetition, we will not carry out th
calculation for the effective equation of state ofrR , since the
procedure is essentially the same as that forr II , and it re-
sults in an effective radiation equation of state

11w̃R5S 11y
12wtotal

2 D ~11wR!. ~42!

III. THE ISSUE OF COINCIDENCE AND COMPARISON
TO OBSERVATION

From the computation of the pressuresp̄H and P i , it is
clear that the initial radiation is redshifted faster than
other components of the total energy density. We can as
what time,teq , the r II components of matter become com
parable to radiation,

rR.r II .
r total

2
5

3

2
Heq

2 M2, ~43!

with

r II .CpB
3exp@22pB /M #.

3

2
Heq

2 M2. ~44!
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From the above equation we obtainpB at teq :

pB.
M

2
lnF 2CpB

3

3Heq
2 M2G . ~45!

On the other hand, from Eq.~12! we have

pH.M lnFpH

H G , ~46!

and comparing Eqs.~45! and ~46!, it is clear thanpB(teq)
,pH(teq), and therefore

rH~ teq!,r II ~ teq!. ~47!

So matter-radiation equality takes place well before the ev
tual ‘‘tail’’ domination. From the equations of state,w̃H and
w̃II , Eqs. ~37! and ~40!, we have thatr II always dilutes
faster thanrH . Thus the inequality in Eq.~A4! holds true not
only at t5teq but also at all earlier times, beforeteq . Gen-
erally, there may be other sources of matter and radiatio
the Universe, besides the contribution from the tra
Planckian modes. Although these components would no
affected by the viscous pressure corrections,P i , their con-
tribution should included in the Friedmann equation wh
determining the equality time,a(teq)5aeq . Since their ef-
fect on the expansion is well studied and known, here
focus our attention only on the role of the trans-Planck
modes.

Let us now estimate the time at which the tail takes o
to dominate the expansion and address the issue of the
mic coincidence. We start by determining the timeaDE , that
we have

rH~aDE!5r II ~aDE!5r total~aDE!/2, ~48!

or in terms of the density parametersVH(aDE)5V II (aDE).
From the Friedmann equation for the expansion and the
lation of w̃H to wtotal it is straightforward to determine tha
at a5aDE we have

w̃H~aDE!52
2

3
, wtotal~aDE!52

1

3
, ~49!

and therefore

aDE

aeq
5F r II

(0)

rH
(0)G 2/3(wtotal11)

5F rH
(0)

r II
(0)G 1/2

, ~50!

with r i
(0) the value of thei th component at equality time

aeq . It is interesting to notice thatwtotal521/3 corresponds
to the transition time at which the deceleration paramete

q.
1

2
~3wtotal11! ~51!

changes sign and goes through zero. This means that a
eration starts at the same time,aq , as the dominance of the
9-6
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tail, aDE , i.e., aq5aDE . Using the Friedmann expansio
law, we can find the solution for the scale factora, after the
time aq to be

S ȧ

a
D 2

5
r II

3M2
1

rH

3M2
5

H2~aq!

2 F S aq

a D 3

1
aq

a G . ~52!

Therefore,

E
1

a/aqA a/aq

~a/aq!211
d~a/aq!5

H~aq!

A2
~ t2tq!. ~53!

This integral can be done exactly and it is convoluted. T
important point is that it gives a power law accelerated
pansion,a/aq.tn with n>2. Clearly the tail is behaving a
dark energy and it is dominating the expansion soon a
aq .

Let us understand physically what occurs around the t
a5aq , and whyaq5aDE . As shown in Sec. II, due to the
strong coupling of the tail evolution to the Hubble consta
H, and therefore tor total , w̃H becomes increasingly negativ
with decreasing values ofwtotal , soon afteraeq . Thus the
tail starts to behave like dark energy, dominates the exp
sion, and approaches its limiting valuew̃H521 only at late
times, when other energy contributions tor total become neg-
ligible. From Eqs.~30! and ~35!, when r II .rH we obtain
G II .2yGH/2. When the tail dominates, the only solution
the Friedmann equation isGH→3H, and thenwtotal5w̃H
.21. This means that the tail dominates the expans
(wtotal521) very quickly and around that timer II has be-
come nearly zero. Recall that in this estimation we assum
that around the timeaq , r II is the only source of matter. Th
fast dilution of r II as compared torH , due to the viscous
pressure effects ofGH , is the reason forq50 occurring at
the same time as the tail dominance,aDE . With no other
sources of matter,wtotal almost immediately goes from
wtotal521/3 to wtotal521. Thus aDE has occurred very
recently indeed. If we consider other matter contributions
the Friedmann equation, that are independent ofr II , G i ,
then the time of the expansion between the start of the
celerated expansionaq and the time of tail dominance ove
r total ~i.e., whenwtotal5wH.21) becomes a bit longer
This time interval fromaq to the present is also the tim
interval for which the tail has acquired a dark energy eq
tion of state, until it reaches its limiting value,w̃H521.
Therefore,cosmic coincidence is explained naturally by t
intrinsic time evolutionof the effective equation of state fo
the tail, w̃H.

IV. SUMMARY

Models of nonlinear short-distance physics discussed
cently in the literature@8–13,16# usually introduce a time-
dependent frequency, at the level of the equation of mo
for the field. As a result the Bianchi identity is generica
violated which indicates that Einstein equations need to
modified in the high energy regime. It is difficult to do s
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without an effective Lagrangian description of the theory
the trans-Planckian~TP! regime.

We therefore used a kinetic theory approach, in orde
estimate the short-distance modification to the cosmic fl
stress-energy tensor for the model of Ref.@2#. It is not clear
to us whether this procedure determines the modification
a unique unambiguous way, or whether fluid idealizatio
and the assumption that kinetic theory remains valid at s
high wave number modes, is a good approximation. Nev
theless, we believe that without an effective Lagrangian,
netic theory is the only available tool to determine som
sensible results for the contribution that TP modes make
the long wavelength regime.

In a previous paper@2#, we showed that the energy con
tribution of the tail modes is comparable in magnitude to
observed dark energy in the universe. In this work we cal

lated the effective equation of state,w̃H , for these tail modes
in order to address the cosmic coincidence issue and sho
that the tail modes behave as dark energy only at late tim

The tail has an exponentially suppressed frequency an
the modes withv,H are frozen-out by the expansion of th
background Universe. However, due to the short-dista
pressure modification, the tail does not always behave
dark energy. The highly nontrivial time dependence of ta
dominant modepH tracks the evolution of the total energ
densityr total through its strong dependence on the Hub
constant,H. The dependence ofpH on H is given by the
freeze-out condition.

As a result of the coupling of thepH mode tor total , the
tail equation of statew̃H follows the evolution ofwtotal ,
such thatw̃H.(wtotal21)/2. For this reason,w̃H acquires
increasingly negative values aswtotal decreases, from radia
tion to matter. The tail has a slower dilution with the sca
factor compared to the other components and it start to do
nate the expansion and behave as dark energy in only a s
amount of time only, from the time at which the decelerati
parameterq changes sign at timeaq . From this pointaq ,
with wtotal521/3, w̃H522/3, and onwards, the tail drive
the Universe into an accelerated expansion, and soon rea
its limiting value of wtotal.w̃H.21 with r total.rH .
Therefore, cosmic coincidence in this model is explain
naturally from the time evolution of the tail’sw̃H
5 f @wtotal#. This is the most important result of this pape

We mention here that we have implicitly taken the ratio
the different energy components in the Universe, say, at
time of big bang nucleosynthesis, to be the conventional o
This amounts to tuning the Bogoliubov coefficient wh
computing the energy density contribution of the TP mod
by tuning the parametere1 to be of order unity. This is
equivalent to requiring the height of the plot in Fig. 1 to b
within a few orders of magnitude of the Planck mass dur
inflation. This is a reasonable assumption and not a seve
tuned value.

The TDE model was motivated by the closed string the
of the Brandenberger-Vafa model@4#. Therefore its observa
tional implications may be explored to be indirect string s
natures. Some of the distinctive features of the TDE mo
9-7
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are the predictions that8 the change in sign of the deceler
tion parameter,q50, occurs at the same time as the start
tail dominance, i.e., the time at which the tail energy is h
of the total,aq5aDE ; this accelerated expansion occurs in
very short amount of time; due to the viscous pressure
fects, the matter contribution from the TP modes go
through a change of its equation of state such that it star
decay faster than normal matter. The latter effect shortens
time the Universe takes to change the parameters f
wtotal.21/3,q50 to the time when wtotal.21,r total
.rH . To arrive at these numbers, we ignored other ma
sources as well as the short-distance corrections to the e
tions of statê wi& that present as inverse powers of the sc
factor,O(1/an). Perhaps these corrections may be importa
in terms of delaying the time the tail takes to behave as d
energy,w̃H.21. These features can be scrutinized in futu
work @20#.

Note added.The results obtained in this paper for the t
equation of state,w̃H , differ from those reported by Lemoin
et al. @21#. The fact that we include the curvature terma9/a
under the definition of the generalized frequencyv2, while
they keep the two contributions separate, is not the o
source of discrepancy. There are fundamental differences
tween the two studies. Authors of Ref.@21# ignore the crucial
effects of the out-of-equilibrium dynamics and the break
of Lorentz invariance, by the nonlinear short-distance mod
when carrying out their calculation forrH and pH . In their
approach these effects would be contained in the dynam
of the vector fieldum described by a LagrangianLu for this
field. Obviously, the choice ofum field dynamics and its
LagrangianLu strongly depend on the details of the sho
distance nonlinear model considered. The expression forLu
that these authors borrow from the Corley-Jacobson~CJ!
model @7# is consistent only with the dispersion function
the CJ modelfor stationary backgrounds, since bothLcor and
the terms given byLu contain up to fourth order derivatives
together with the antisymmetric tensorFmn . Therefore,Lu
gives zero corrections torH , pH when applied to the
Friedmann-Lemaıˆtre-Robertson-Walker Universe~where
clearly the antisymmetric tensor vanishes identically toFmn)
and hence, higher order counterterms (um)n in Lu are ig-
nored, while at the same time inLcor they have a series of a
higher order derivative terms, up ton→`. It is easy to check
whether they break the energy conservation law and Bian
identity by plugging in the energy conservation equation
their expression forr andp in their Eqs.~35! and ~36!:

^ṙ&13H^~r1p!&Þ0, ~54!

which we suspect is due to the aforementioned reasons.
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8These predictions are in the absence of other matter source
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APPENDIX

1. Distribution function for the linear, crossover,
and trans-Planckian regime

We have a time translation Killing vector for future infin
ity that determines our outgoing positive frequency mod
Let us consider our Universe as an expanding box, with s
L5a/M , filled with modes. Inside this box we have
smaller box with fixed sizel p.1/M that determines the
range for the trans-Planckian~TP! modes. There is a pre
ferred frame attached to the small box~due to the breaking of
Lorentz invariance by the short-distance modes! but Lorentz
invariance is restored in the big box, the expanding Unive
Following along the arguments and derivation in Ref.@16#
for the ‘‘particle’’ distribution function, it is straightforward
to apply their expression to our model. Below we consid
three regimes depending on the value of momentump with
respect to the cutoff scaleM:

~i! p/M!1, the ‘‘normal regime.’’ In this regime the fre
quency of the modes becomes linear,

v@p#.pe2p/M→p/M!1 p. ~A1!

The wavelength of these modes is thenl.O(L)@ l P .
~ii ! p/M.O(1), the crossover or intermediate regime

during which the TP modes go from the ‘‘TP box’’ with fixe
size l P51/M P into the ‘‘big box’’ with size L5a/M . This
process occurs due to the redshifting of the modes,pi
5ki /a. Each modepi will crossover and become a ‘‘norma
mode’’ at some timeai5ki /M .

~iii ! p/M@1, the TP regime, such thatl.1/k! l P
51/M .

We do not report the derivation of the distribution fun
tion since the reader can find it in detail in Ref.@16#. In what
follows we apply it to our case, to lend support to our a
sumption that the TP modes,modes in the small box with
fixed size lp51/M with respect to the preferred frame, are
not in thermal equilibrium, while modes in the range of t
linear regime~modes in the big box with size L5a/M, where
Lorentz invariance is restored, the FRW Universe! are in
nearly thermal equilibrium:

N~v!5U ~v in!vg~pin!

~vout!vg~pout!
UUbp

ap
U2

. ~A2!

The index in (out) refers to the incoming~outcoming!
modes as defined in Ref.@2#; vg is the group velocity,

vg~p!5
dv

dp
, ~A3!

and bp , ap are the Bogoliubov coefficients, which in ou
model do not depend on the momentump @2#. The dispersed
frequency is given in Eq.~4!, and thus

uvg~pin!u5
v in

pin
U12

pin

M U, ~A4!

vg~pout!.1, ~A5!
9-8
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since v(pout).pout . The phase velocity is defined asvc
5v/p. Therefore

N~v!5Ubp

ap
U2

~e2p/M P!Ue2p/M PS 12
p

M P
D U. ~A6!

The thermal distribution is immediately recovered in t
limit p/M!1, i.e.,vg→1 andv(p)→p.

Now we can evaluate the distribution function for the d
ferent regimes above:

~i! In this case

Na~v!.Ubp

ap
U2

, ~A7!

as it should, since we recover in theout region the normal
linear frequency for the modes,p/M!1 andvg.1.

~ii ! In the intermediate crossover regime,p/M.O(1),
we have

Nb~v!.
C

2

e22

ebv21
, ~A8!

where we have identified the inverse of temperatureb.a
and the linear term inp/M with

bv.
1

12p/M
5a

M

aM2k
, b.a. ~A9!

Clearly in this regimeuvgu goes to zero, andbv goes to
infinity. The spectrum is nearly thermal, however,N(v)
goes to zero, since as seen from the TP box the group ve
ity of these modes as they approachp.M becomes zero; o
as seen from the normal particles in the big box, these mo
have a high frequency (v'M ), thus they do not contribute
very much to the energy of modes in~i!.

~iii ! However, in the TP regime the distribution functio
strongly deviates from that of thermal equilibrium, since
this casevg( in)Þ1, and the frequency is highly nonlinear

Nc~v!.
C

2
ue2p/Mue2p/MU12

p

MU, ~A10!

with p/M@1. NeverthelessNc(v)→0 whenp/M→`, thus
their contribution to the energy is suppressed. The supp
sion comes directly from the frequencyv(p).pe2p/M in
this case.

The volume element in momentum space,dVP , for the
dispersed ‘‘particles,’’ whose world line intersects a hyp
surface elementdS aroundx, having momenta in the rang
(p,p1dp), is dVp52d(pmpm)dp4, where p is future di-
rected. Based on the definition of Ref.@16# for the inner
product of the fields (f@ in

out#,f@ in
out#) and integrating over the

entire mass shell, the three-volume in momentum spac
given by

dV35a3U 1

vg
Ud3p, ~A11!

which is consistent with the quantum field theory expr
sions of currents and ‘‘particle’’ number densities, given
10351
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terms of creation and annihilation operators. The distribut
function, Eq. ~A10!, justifies our assumptions of deviatio
from thermal equilibrium in the TP regime.

2. Averaging of the TP energies, pressure,
and equation of state

We have shown that modes in the TP regime of such v
short wavelengthlTP! l P are out of thermal equilibrium.
Thus we need to average their effective contribution to
energy and pressure over many wavelengths, in order to
tain a nearly thermal, large scale state. This averaging
done over many wavelengths since, clearly, scales of cos
logical order that are of interest to us are much much lon
than any TP wavelengths. In what follows, we are interes
in finding the averaged bare quantities^r i& and ^ p̄i& before
including any modificationP i . The viscous pressure mod
fications,P i , occur due to the freeze-out and the change
the number of particles and are accounted for separatel
Sec. II. Therefore region II will be grouped together wi
region H, since both have a highly dispersed TP freque
and, for the moment, we ignore the freeze-out correctio
Approximately we can write the energy of regions~01I! and
~II1H! in one compact form to avoid repetition:

r5p4Q~M2p!1
M

2
p3e2(p/M )Q(p2M ), ~A12!

whereQ(p2M ) is the unit step function that takes the valu
Q(p2M )51 for p.M and zero otherwise. Clearly, fo
modes withp/M@1 we getr II (rH). And for modesM
.p we get the radiation energy density of the~nearly! linear
modes.

Using the energy conservation law~while ignoring the
freeze-out effects!

r1 p̄5
p

3

dr

dp
5

p

3 S dr1

dp
1

dr2

dp D5~r11 p̄1!1~r21 p̄2!,

~A13!

with

r15
M

2
p3e2p/M, p.M , ~A14!

r25p4, p,M . ~A15!

And from Eq.~A13! we find

w15
p̄1

r1
52

kB

3aM
Q~kB2aM!, ~A16!

w25
p̄2

r2
5

1

3
. ~A17!

It is clear from the previous section that since the~nearly!
linear modes,r2, are nearly in thermal equilibrium then w
9-9
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do not need to bother with the averaging procedure for th
~one can, however, check to verify the result^w2&51/3).
This is not the case for the modes withp/M.1, since these
short wavelengths are out of equilibrium. Let us calcul

^ p̄1&, ^r1&, and^w1&:

^r1&5

E
0

a

r1a2da

E
0

a

a2da

53

E
0

a* 5k/M
r1a2da

a3
.

14M4a* 3

16ea3
.

~A18!

Similarly,

^ p̄1&5

E
0

a

p̄a2da

E
0

a

a2da

53

E
0

a* 5k/M
p̄a2da

a3
52

14a*
20a

^r1&,

~A19!
ol
,

l,

D

,

.

ys

0
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^w1&5
^ p̄1&

^r1&
52

14a*

20a
.2

B

a
, ~A20!

where in Planck units,a* 5 l p and we have used the norma
ization that Planck lengthl p51/M5a* 5a(tP)51. The
time a* corresponds to the crossover time at which t
wavelength of the TP modes is on average of order of
size of the small box,p(a* )5M . This time scale of order of
the Planck box is much smaller than scales of cosmolog
interest, L5a/M . External observers bound to the larg
scale, the Lorentz invariant Universe with sizeL5a/M and
in thermal equilibrium, ‘‘feel’’ the energy and pressure co
tributions from the TP modes given by Eq.~A10!.

Of course the real equation of state for these mode
given by their effective equation of state,w̃i , Sec. II, that
takes into account the relativistic kinetic theory modific
tions due to the freeze-out. In a similar manner, one
obtain^w2& and in particular the numerical coefficientA for

^wI&,p̄I ,r I .
D

.
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