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Equation of state of the trans-Planckian dark energy and the coincidence problem
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Observational evidence suggests that our Universe is presently dominated by a dark energy component and
is undergoing accelerated expansion. We recently introduced a model, motivated by string theory for short-
distance physics, for explaining dark energy without appealing to any fine tuning. The idea of trans-Planckian
dark energy(TDE) was based on the freeze-out mechanism of the ultralow frequency meges, of very
short distances, by the expansion of the background unive($@=<H. In this paper we address the issue of
the stress-energy tensor for nonlinear short-distance physics and explain the need to modify Einstein equations
in this regime. From the modified Einstein equations we then derive the equation of state for the TDE model,
which has the distinctive feature of being continually time dependent. The explanation of the coincidence
puzzle relies entirely on the intrinsic time evolution of the TDE equation of state.
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[. INTRODUCTION proaches the limiting valuer, = —1, after the matter domi-
nation time,teq.

Cosmological observations of large scale structure, super- The calculation of the components of the stress-energy
nova type la age of the Universe, and cosmic microwavéensor,T,,, namely, the pressure and energy density, is
background CMB) data strongly indicate that the universe is given in Sec. Il. Due to the nonlinearity of short-distance
dominated by a dark energy component with negative presphySiCS, the Bianchi identity is generically violated for all
sure[1]. In addition to the difficulty of coming up with a these models. Therefore one needs to modify the Einstein
natural explanation for the smallness of the observed darRguations, T,,), such that the modified ones satisfy the Bi-
energy, an equal challenge is the “cosmic coincidence@nchi identity. From physical considerations, the need for
problem. modlfy|_ng Einstein _equ_atlons in the nonlinear regime o_f_

Recently we proposed a modé] for explaining the ob- short-distance physics is to be expected, due to nonequili-

served dark energy without appealing to fine-tuning or anPrum dynamics of the short-distance modes. In practical

thropic arguments. This model is based on the nonlinear b(%germs .th's 'S not ea}sy to carry out in an unamb|ggous way,
. ; . . . for a simple reason: we do not have a unique effective theory
havior of trans-Planckian metric perturbation modes which

was motivated by closed string theof$,4] and quantum valid at trans-Planckian energies or a Lagrangian description

. ) of the theory in this regimé6]. The only information avail-
gravity [5]. The trans-Planckian dark energyDE) model able to most trans-Planckian mod¢k2,8—17 is the field

was based on the freeze-out mechanism of the Short'diStan%ﬁuation of motion(with a few exceptions, see RefL3]).
modes with ultralow energy by the expansion of the backy\eyertheless all these models do violate the Bianchi identity
ground universetd, and it naturally explained the smallness 54 the energy conservation law,Tif,,, is not modified ac-

of the observed dark energy. cordingly.

In this paper we study the stress-energy tensor of the TDE Based on the equation of motion as our sole information
model in order to calculate the equation of state for theseor short-distance physics, we therefore use a kinetic theory
short-distance stringy modes. As we will show, the frozenapproach[14] for modifying Einstein equations in the ab-
tail modes start having a negative pressure of the same ordsence of an effective Lagrangian description. The assumption
as their positive energy density soon after the matter domimade is that a kinetic theory description of the cosmological
nation era. Thus it is only at low redshifts that they becomdluid is valid even in the trans-Planckian regime. Despite its
important for driving the universe into an accelerated expannonlinear behavior at short distances, this imperfect fluid
sion and dominate the Hubble expansion kté distinctive ~ shares the same symmetries, namely, homogeneity and isot-
feature of the TDE model is that its equation of statg,, is  ropy, as the background Friedmann-Robertson-Walker
always strongly time dependent at any epoch in the evolutiofFRW) universe. Then the corrections,, to the stress-
of the universgle.g.,wy=—1/3 during the radiation domi- energy tensofl ,, will also be of the diagonal forri15]
nated era but it becom&g, = — 1/2 at matter dominatignlt .
becomes increasingly negative at later times until it ap- 7,,=(e+IDu,u,+1Ig,,. (€N)

In Sec. lll we explore the observational consequences of the
*Email address: mbg20@pact.cpes.susx.ac.uk model with the puzzle of “cosmic coincidence” in mind. A
"Email address: l.mersini@sns.it summary is given in Sec. IV. A discussion of the nonequili-
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brum dynamics and distribution function for the trans-
Planckian(TD) modes, as well as details of averaging their
energy and pressure, are presented in the Appendix.

w?’[p]=Ve + ezp?exd —2p/M],p>M, (7)

for those modes in the TP regime. The nonlinear exact func-
tion Eq. (4) for the frequency can be fitted te[p]?
~ p?/(costip/p.—17).

Lorentz invariance is broken due to the nonlinearity at
short distances. Therefore, tfiged cutoff scalep.=M, to-
gether with all the trans-Planckian modes piclpraferred

Trans-Planckian models that investigate the sensitivity oframe the CMB frame. This frame is freely falling along the
the cosmic microwave backgrountCMB) spectrum or comoving geodesics, with respect to the physical FRW
Hawking radiation to short-distance physics, all introduce dJniverse? Sometimes we will refer to trans-Planckian

nonlinear, time-dependent frequency for the very short wavemodes as the modes inside a small box with fixed Planck
length mode$2,7-10Q: size,|,=1/M, in the preferred frame, since their wavelength

Arp<lp is smaller that the “size of the box>M. In this
w[p]=f[p]=flk/a].

picture, Lorentz invariance is broken in the small box but

restored in the large box with size=a/M, i.e, the Uni-
The physical momenturp is related to the comoving wave verse. Thus the physical momenta modes for the “small
numberk by p=k/a, with a the scale factor. Most of these box” bound observers in the preferred frame are the comov-
models lack a Lagrangian description, and all the informaing wave number modes for the “outside” observers, in the
tion they propose about short-distance physics is containedorentz invariant FRW Universe, that “see” the preferred
in the mode equation of motich: frame in a free fall.

Let us first address the issue of how the energy density
components behave with time, prior to the pressure modifi-
) ] ] ) ) cations. We will refer to the wave packets of the modes cen-

The expectation that Einstein equations will not hold un-ereq around a momentup as particles. Then, their group
less they are modified in the nonlinear regime of shortyg|gcity vg=dw/dp is time dependent through its nonlinear
distance physics is fully reasonable and it is based on the fa%t dependence, and is different from the phase velooity,
that the Bianchi identity and energy conservation law will be:w/p. Therefore, the short-distance modes are out of ther-
violated due to the nonlinear time dependenceofn terms 4 equilibrium, due to their nonlinear frequency and group
of kinetic theory, the time dependence of the group Veloc'tyvelocity v-#1. Meanwhile a thermal state is restored at
v, indicates departure from equilibriupd6] (see the Appen- large scal%s,)(>lp), where the frequency is nearly linear

Il. THE EQUATION OF STATE FROM THE MODIFIED
EINSTEIN EQUATIONS

A. Analytical expression for T,

)

[0+ w(k,a)?]¢=0. )

dix). Here we study the modifications @f,, for a specific
class, the TDE moddR]. Our approach is based on kinetic

and thusy y=1. Thus we need to average the contribution of
the short-distance modes to the energy and pressure in the

theory and the pressure modifications are obtained througf)njyerse, over many of their wavelengths, in order to obtain

balance equations.
In the TDE model we are considering, the dispersed fre

an effective large scale thermal state. That is why in obtain-
ing the equation of statéw;) for the trans-Planckian modes,

qguency for short-distance metric perturbation modes is prior to the pressure modificatiofis , the averaging is done

in time scales of cosmological order. Details of averaging are

2r ] 2 _na2l €t €3u provided in the Appendix. The equation of stdte;) prior
opl=p*¢lp/pcl=p 1+u +(1+ u)? ' “ to viscous pressure nE)difications is cijtained from
the  expression (w;)=(p;)/(pi) with (p;)=—(p;)
u=exd 2p/p.], (5) —((a/3)dp;/da), with a the scale factor. Based on the be-

havior of vy with p, we divide the dispersion function into
four regions(see Fig. &

Region 0: Linear regime, up tp~p., such thatw[p]
=p. These modes behave as radiation, &g, with the av-
eraged pressure expressipge po/3.

Region I: Around the maximum of the dispersion func-
tion, up to some valupg>M in physical momentum, where
w can be expanded in a polynomial series

wherep, is of order of the Planck mass or string scile p
is the physical momentum, ang are arbitrary constants.
The maximum ofw[p] is aroundp~p.. The frequency
function behaves as
w?’[p]=p?1+0(p’/M?)], p<M, (6)
for the modes in the sub-Planckian regime, and as
o[pl=plag+ay(p/M)+ax(p/M)?+---1, (8
The w? term collectively denotes the generalized frequency thatVherea; are constantsa,<<0). Region | is dual to region 0.
appears as a mass squared term in the equation. Depending in tHée use Eq(8) to estimate the energy density
particular problem studied it may also include other terms such as,
for example, the coupling of the modes to the curvature of the
universea”la, if the equation under consideration is that of metric 2See Ref[16] for a very nice treatment of issues related to a fixed
perturbations. physical cutoff in a preferred frame.
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lations and its averaged pressuis (p,)=(—B/a){p;)
=0. Also sincex,;>xg>1 thenF[xg]>F[xy].

Region “H:” This is our “tail” [2], defined as the part of
the graph for which the frequency of the modes is smaller
than the Hubble parametét, The functional behavior of the
frequency withp is the same as in region Il, therefore the
H averaged pressure expression for this region is the same as
that of region Il, that is{py)=0. But the lower limit of
integrationky (or py) is given by the physical condition of
the freeze-out of the modes by the expansion of the back-
ground universe

H
wy[pu]=H. (12)
This region includes the modes fropg, to « in the range in
which w is exponentially suppressed. The energy density of
0 ' the tail is
Pc Ps P
3
FIG. 1. The dispersion function for the frequeneyp] vs p. s E ki _
The separation into four regions is based on the behavior of the PH= a3 2Maexq 2kp/aM]. (13

group velocity. The “tail” is denoted by region “H.”

Notice that due to the freeze-out, the evolution of e
mode is highly nontrivial and thus corrections to the aver-

C (ks k k \? _
Puz—‘J dkk®| ag+ gy e gm) T aged pressure terfp,;)=0 will be important.
a-’m Modes in the tail, betweepy to «, behave differently
CM*[a, a 4 from the other modes, since their time dependence is con-
~ —(xé— 1)+—1(x‘g— D+ joc—, (9) trolled by the Hubble expansion, Ed.2). On the other hand,
at |4 5a a’ all modes with moment@<py redshift in the same way

with the scale factor, towards decreasing values, i.e, the lin-

ear regimé'. Nevertheless, these regio(@1,11) also receive
where Xg=kg/M>1,(xg)=0O(1). The constant C  gsmall modifications to their pressure term from the deep
=|Bi/?(27?) denotes the Bogoliubov coefficient squared, trans-Planckian regime. We show below that the modifica-
which in our model does not depend on the wave nunkber tions due to thep,-defrosting effect are non-negligible and
[2], with |By|*~exp(~4m/e;). Therefore,p, behaves like important only in the highly nonlinear regime, aroupg.
radiation_plusO(l/az) corrections in its averaged equation  Now, we would like to estimate the corrections to pres-
of state,(p,)=(1/3—A/a+---)(p,). Regions | and 0 con- sure,II;, for all these regions, with the notatid? for the
tribute to the radiation energy component in the Universe. effective modified pressure:

Region II: From some mod@g>M onwards, defined

such that its frequencies can be best fitted to an exponential piﬁ<a>+ni , (14)
dependence op, o[ p]~pexd—p/M]. The energy density
for this region is where the index runs to=0, I, I, and H. The averaged

unmodified “bared” pressure expressimﬁﬁ), are
M 4
(F[xel—=F[xux]),
(10)

C (ku
p||2—4f dkklexd —2k/aM]=C
a Jkg

_ — 1 A
a® <po,|>2(§_g+"')<l)o,l>7 (15

B
_5+"' (pi 1) (16)

where <E| HY=

2 3% 3 3 The inverse power terms afcan be neglected arl, B are
Fixl=lot+ 220 4 2000 2 axd — 2x. /a 11 numerical constants related to the averagsee the Appen-
] ( 2Tz Ty Ty aaal b G details.

andx;=k;/M. Sincexg>1 thenF[xg]= 3x3exq —2xg/al. 3See the Appendix for details of averaging.
Thusp, behaves as matter when averaged over many oscil-“Modes in the linear regime are referred to as “normal modes.”

103519-3



M. BASTERO-GIL AND L. MERSINI

In a similar manner to particle creation ca$&3g| in im-

perfect fluids[14,1§, the highly nontrivial time dependence
of the modepy and the transfer of energy between regions,

due to the defrosting of this mode across the boungary

give rise to pressure corrections in the fluid energy conser-

PHYSICAL REVIEW D67, 103519(2003
Each component satisffes
Ny =T3Ny, (21)

Ny=(3H—T")Ny, (22)

vation law. The defrosting of the modes results in a time-

dependent “particle number” for regions negy . From ki-
netic theory we know that this “particle creation(the
defrosting of the modegives rise toeffective viscous pres-
sure modification§14,18. The termll; denotes the effective

viscous pressure modification to the “bare” pressyre,.

The criterion we use for modifying,,, is that the Bianchi
identity must be satisfieflL9] with the new expressions for
pressuré, P, ,

Silpi+3H(pi+ i+ 1) 1=3i[ pi+3H(p;+ P)]1=0,
(17)

with i=0, I, ll, and H. Let us write this expression explicitly

where the “decay rates” of the regiorl$, account for the
rate of change in the number of their “particle§hodes,
due to the defrosting effect.

The system is not yet in equilibrium. The change in the
number of “particles” gives rise to the effective viscous
pressurell;. Even prior to the freeze-out effects, that is,
even forl'y, |, =0, the short-distance modes in regions Il and
Il were out of thermal equilibrium, due to their nonlinear
frequency and group velocityy# 1.

The contribution terms to pressuid;, are related td’,
through[14,18§

in terms of its energy and bare pressure components, and

collect the contributions of regions 0 and | into one com-

bined radiation energyig=po+p;:

pu+3H(py +pi) + prt 3H(pr+pr) = — 3HII, , 18

pu+3H(py+pu)=—3HII,,
(19

whereEthO,ER: 1/3. So, we have imperfect fluids in

3HIT, =~ (pu+pu)Th, (23)
3HITy = —[(py+pi)+(pr+PR)ITH. (29
Therefore, Eq(19) reduces to
pru+(BH=TW)(pu+pu) =0, (25)
which can be also recast as
S
szn_(pH+pH)a (26)
H

regions Il and H, and eventually their energy is transferred,

due to the redShifting eﬁect, to regions 0 and I, which is Whywhere Ny= NH/a3 is the “partide" number density for the
these regions also receive pressure modifications. Neverthgsgion of modes fronp, to infinity. The flow of particles is
less, the viscous pressure corrections to the “radiation’described byn,=nyu,, with u, the unit four-velocity vec-
modes are very small since the energy and the volume afy of the fluid. Notice that since the group velocity in the H

phase space occupied by them is very largétimes larger

region is negative, particles in this region flow in a direction

the Planck size volumeThese regions are in a nearly equi- vy, Opposite the direction of their momenta,

librium situations(see the Appendix
Let us findIl;, in order to solve Eqs(18) and (19). As

explained, the presence bff; is due to the exchange of en-
ergy between the two regions, from the defrosting of the
modespy at the boundary. This is directly related to the time

dependence of the boundamy; , which in turn is going to be

controlled by the Hubble parametidr In essence, there is an

exchange of modes between regio®®+1l) and H. Al-
though the specific number of particlem each of these

The number of “particles’"Ny contained in the tail re-
gime, in its preferred frame, is given by

NH:CHf dkklexg —k/aM]=Cy(aM)
ki
x kZexd —ky/aM], (27)

whereCy,=N|g,/? is a constant proportional to the Bogoliu-

regions,N;; andNy, is not conserved, their rate of change, bov coefficient| 3,2, and we keep an overall normalization
in the physical FRW Universe, is related through the consereonstantN for the sake of generality. We can now calculate
vation of the total number of particles which contains both ofthe energy transfer, due to the defrosting of the mddes

these components,

N=0. (20)

between the tail region and region Il from the balance equa-
tion for Ny, Eq. (22), whereN,, is

"Vector objects related to the flow direction of the fluid are de-

°From here on we drop thg - -) notation and denote the aver- noted in bold letters, e.gN;=N;u,, with u, the unit four-velocity

aged “bare” pressure simply bﬁ instead of(E).

vector of the fluid and the corresponding modulus of this velstor

5We are loosely using the term particle here to refer to the waveNotice that the factor (BN) in Eq. (22) is related to the fact that
packets of the trans-Planckian modes, centered around a momeritee preferred frame for the tail modes falls along comoving geode-

pi .

sics in the Universe.
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. k4 k
Ny=Cy jk dkkz(a—M> exd —k/aM]
H

— CyukZexd —ky/aMTky
=3HN,— CykZexd —ky/aM](ky—Hky)

ky/aM (H)

TkylaM—1\H

~Ny m

3H . (28)

In the last line we have used the approximation in &7),
and

PH pH/M (H>, 29

P 1-puy/MIH

derived from Eq(12). Whenpy>M (which always holds
we have, forl'y,

H 1_Wtotal
FH—3H+ﬁ—3H<T), (30
where we have defined
H 3
ﬁ = EH(l"'Wtotal): (31)

With Wyo 1= Protal/ Protal TEEITING to the effective equation

of state for the total energy density. Therefore, whgg,
——1 then I'y reaches its limit,I'y—3H. I'y cannot

PHYSICAL REVIEW D57, 103519 (2003

M pyH

- (T,-3H),
4M3+MpHH( H3M)

0 (34

andNt=N;, — Cy(Mppwy) =4CyM3. In obtaining the sca-
lar quantity for the number of particles; from their flow

Ny, the negative sign picked up in the second ternNinis
related to the fact that the flow of the tail’s defrosted modes
is in the direction opposite to their momenta, due to their
negative group velocity. Therefore, by plugging in the ex-
pression ofN,, from Eq. (33), we get that in the limitN,,
>MpyH thatT'}, is smaller thard’; and negative, given by
the expression

Pu H

Py==GH-Twuwm: (35

Since pyH2<M?H theny=pyH/(4M?)=0O(H/M) is go-
ing to be much less than 1 for as long as the expansion is not
dominated by the tail. From the conditiesy[ py]=H, and
the time evolution of the physical momentyp in Eq. (29),

we have thatp,/py— —H/H, when py>M. The exact
value ofy does not matter and it is small. Nevertheless, the
pressure modificatiolI,; slightly increases the dilution of

p as determined by the equation foy . The tail domina-
tion case, whempy becomes comparable 11,, should be
treated separately sindg, —0.

In this part we calculate the effective equation of state for
all the regions, from the pressure expressigns,II; that
were obtained in the previous section. Starting with region
H, and using Eqs(19), (23) and (30), we have

change anymore once this limit is reached because the

Hubble constant and the modp, freeze to a time-
independent value. Notice that, is positive for all equa-

tions of statew,,, =<1 and thus it slows down the dilution of
the tail with the scale factor. Thus, the increase in the number
of particlesN, as given byl',; does not allow the energy The *
density of the “tail” to redshift as fast as matter. This indi-

cates that although initially smajp,,; eventually will come to
dominate the total energy density.

We can repeat the same procedure for the modes in re-
gions O, I, and Il in order to obtain a closed equation for

,')R,,, , similar to Eq.(25), i.e., given entirely in terms Qig
andpg, ,

bII,R+(3H_FII)(PII,R_"EI,R):Q (32

where we have used ER4).

Let us now try to relatd’y to I'}, . The total number of
not frozen particlesN,,;, in the region from zero td is
given by

N, =Cu[4M3+ Mpyoy]. (33

From the total balance equation for the particle numbegrated expansion,q=0, p;=py,
between the two regionsR@11) and region H in the co-

moving volume, we havé\,,;;; =0, whereN, =I";N,, and
Ny =M pZexp(py/M)u=MpyHu. Thus

P 3H
—=Ty—=3H)(1+wy)=— > (1+Wiota) (1+Wy).
PH

(36)

effective” equation of state for the tail can be read
from this expression to be

~ 1
1+WH:§(1+Wtota|)(1+WH): (37)
with wy=0. The time evolution fopy is
3
pu=pn(0)exg — EJ (1+Wiora) (1 +wy)dIna
=pH(0)ex;{—3f(1+VvH)d|na. (39

During radiation dominationw,5,=1/3, then the effective
equation of state for the tail i&,= —1/3; for matter domi-

nation,w,o;=0, thenw,=—1/2; at the start of the accel-
we have Wigia=

—1/3, wy=—2/3; and finally, if the tail dominates, then the
only solution to the Friedmann equation is given Wy,

=Wy, , with wy,=—1. Therefore, the tail starts to behave as
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dark energy in only a short amount of time, when its equa+rom the above equation we obtaig atteq:

tion of statew,, closely approaches the limiting value,,
=-1.

By the same procedure, we can now estimate the effective

equation of state fop,, in terms ofl"; :

bll 1_Wtotal
2 y

_:F||_3H:_3H
P

1+ (39

M I 2P (45)
=—In|——|.
b= 2" snz M2
On the other hand, from E@l2) we have
pr=M In| 2% (49

Thus the effective equation of state for region Il, obtained

from Eq. (39), is

~ 1-w
LWy = 1y =2 (40)

)(1+Wll),

wherey=(py/M)(H/M)=0(H/M) andw,;=0.
The time evolution of the,, energy density component is

. (41

P :Pn(o)exl{_3f (1+w)dIna

In a radiation dominated universél(M)«=(1/a?), and dur-
ing matter dominationfl/M)«=(1/a®?). The point is that the
correctiony to the matter equation of state for region Il is

and comparing Eqg45) and (46), it is clear thanpg(teg)
<pu(teg), and therefore

(47

So matter-radiation equality takes place well before the even-
tual “tail” domination. From the equations of state,, and

w,, Egs. (37) and (40), we have thatp, always dilutes
faster tharpy . Thus the inequality in Eq/A4) holds true not
only att=teq but also at all earlier times, befotg,. Gen-
erally, there may be other sources of matter and radiation in
the Universe, besides the contribution from the trans-
Planckian modes. Although these components would not be
affected by the viscous pressure correctidds, their con-

pH(teq)<pII (teq)-

small at least for up to the equality time. During most of theyj tion should included in the Friedmann equation when
history of the Universey goes as an inverse power of the determining the equality timea(teg) =aeq. Since their ef-

scale factor a. So region Il behaves much like matter. Theaet on the expansion is well studied and known, here we
special era at which the tail eventually dominates the exparg,c,s our attention only on the role of the trans-Planckian

sion and H becomes a constdat py= CONSt, Wy =W;ga
=—1) is discussed below in Sec. Ill.

Similarly, by repeating the same steps, from ELp), it
can be shown that the modifications to pressurepfor re-

modes.

Let us now estimate the time at which the tail takes over
to dominate the expansion and address the issue of the cos-
mic coincidence. We start by determining the timg-, that

gions 0 and I, are very small indeed. Thus their effectivewe have

equation of state remains very nearly that of radiatiog,
=1/3. In order to avoid repetition, we will not carry out the
calculation for the effective equation of statepgf, since the
procedure is essentially the same as thatpfpr and it re-
sults in an effective radiation equation of state

1- Wiotal

1+\7VR: 2

Ill. THE ISSUE OF COINCIDENCE AND COMPARISON
TO OBSERVATION

From the computation of the pressurﬁs. andIl;, it is

clear that the initial radiation is redshifted faster than the
other components of the total energy density. We can ask at
the p;, components of matter become com-

what time,te,
parable to radiation,

Ptotal _ 3 2
2 gHeM”

PR=p1 = (43
with

3 3 24,2
p”:CpBexr[—ZpB/M]zEHeqM . (44)

pr(ape) = pi(ape) = Protal(@pe)/2, (48)

or in terms of the density parameteis;(apg) = Q(apg)-
From the Friedmann equation for the expansion and the re-
lation of Wy t0 Wy it is straightforward to determine that
ata=apg we have

- 2
Wy(apg) = — 3 Wiotall@pg) = — 3 (49
and therefore
2/3(Wyotar+ 1) 12
Ay | (0 RIS
ed | PH P

with p{%) the value of theith component at equality time,
@gq- Itis interesting to notice thaw,,= —1/3 corresponds
to the transition time at which the deceleration parameter

1
q= E(Bwtotal+1) (51

changes sign and goes through zero. This means that accel-
eration starts at the same tinw,, as the dominance of the
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_ Pu PH Hz(aq) 3

3M2 3mM?2 2

8q
a

a
+
a

(52

tail, apg, i.e., ag=apg. Using the Friedmann expansion without an effective Lagrangian description of the theory in
- estimate the short-distance modification to the cosmic fluid
a
E
a unique unambiguous way, or whether fluid idealization,
alag ala H(ay) theless, we believe that without an effective Lagrangian, ki-
f ————d(alag)=—=-(t—ty). (53) netic theory is the only available tool to determine some
1 (alag)?+1 V2
This integral can be done exactly and it is convoluted. The In a previous papef2], we showed that the energy con-
dark energy and it is dominating the expansion soon afte?bserved dark energy in the universe. In this work we calcu-
a=ay, and whya,=ape. As shown in Sec. Il, due to the that the tail modes behave as dark energy only at late times.
with decreasing values fo;, SOON afteray,. Thus the ~background Universe. However, due to the short-distance
times, when other energy contributionsgg,, become neg- dominant modep, tracks the evolution of the total energy
. . freeze-out condition.
the Friedmann equation Ey—3H, and thenw,y, =Wy
come nearly zero. Recall that in this estimation we assume8uch thatwy=(Wiqa—1)/2. For this reasonwy acquires
pressure effects df,, is the reason fog=0 occurring at ~ factor compared to the other components and it start to domi-
Wiota= — 1/3 10 Wyorq= — 1. Thusape has occurred very parameterg changes sign at tima,. From this pointa,,
then the time of the expansion between the start of the adts limiting value of Wmtalzv\,Hz_l With protal=pPH -
This time interval froma, to the present is also the time = f[Wyorq]. This is the most important result of this paper.
Therefore,cosmic coincidence is explained naturally by thetime of big bang nucleosynthesis, to be the conventional one.
by tuning the parametee; to be of order unity. This is
IV. SUMMARY

Models of nonlinear short-distance physics discussed renflation. This is a reasonable assumption and not a severely

for the field. As a result the Bianchi identity is generically of the Brandenberger-Vafa model]. Therefore its observa-

law, we can find the solution for the scale factorafter the  the trans-PlanckiafiTP) regime.
stress-energy tensor for the model of R&f. It is not clear
Therefore, and the assumption that kinetic theory remains valid at such
sensible results for the contribution that TP modes make in
important point is that it gives a power law accelerated ex-
a lated the effective equation of state,; , for these tail modes
strong coupling of the tail evolution to the Hubble constant, The tail has an exponentially suppressed frequency and all
tail starts to behave like dark energy, dominates the exparfressure modification, the tail does not always behave as
ligible. From Egs.(30) and (35), when p;, = py we obtain density p;o1a through its strong dependence on the Hubble
~—1. This means that the tail dominates the expansion As a result of the coupling of thp,, Mode Opora, the
that around the tima,, py, is the only source of matter. The increasingly negative values @, decreases, from radia-
the same time as the tail dominan@g,:. With no other nate the expansion and behave as dark energy in only a short
recently indeed. If we consider other matter contributions irwith wygiq= —1/3, wy = —2/3, and onwards, the tail drives
celerated expansioa, and the time of tail dominance over Therefore, cosmic coincidence in this model is explained
interval for which the tail has acquired a dark energy equa- \we mention here that we have implicitly taken the ratio of
intrinsic time evolutiorof the effective equation of state for This amounts to tuning the Bogoliubov coefficient when
equivalent to requiring the height of the plot in Fig. 1 to be
cently in the literaturd8—13,14 usually introduce a time- tuned value.
violated which indicates that Einstein equations need to bd&ional implications may be explored to be indirect string sig-

time a4 to be We therefore used a kinetic theory approach, in order to
to us whether this procedure determines the modifications in
high wave number modes, is a good approximation. Never-
the long wavelength regime.

pansionalag=t" with n=2. Clearly the tail is behaving as tribution of the tail modes is comparable in magnitude to the

K i_et us understand physically what occurs around the timén order to address the cosmic coincidence issue and showed

H, and therefore tp,o., Wy becomes increasingly negative the modes witho<<H are frozen-out by the expansion of the

sion, and approaches its limiting valﬁ¢,= —1 only at late dark energy. The highly nontrivial time dependence of tail's

I'y=—yI'y/2. When the tail dominates, the only squEon to SONStant,H. The dependence gfy on H is given by the

(Wygia= — 1) Very quickly and around that time, has be- tail equation of statev, follows the evolution ofw,y,,

fast dilution of p;, as compared t@,, due to the viscous tion to matter. The tail has a slower dilution with the scale

sources of matterw,,, almost immediately goes from amount of time only, from the time at which the deceleration

the Friedmann equation, that are independenpf I';,  the Universe into an accelerated expansion, and soon reaches

Piotal (-8, WhenWiiq=w=—1) becomes a bit longer. natyrally from the time evolution of the tail'swy

tion of state, until it reaches its limiting valugy,=—1.  the different energy components in the Universe, say, at the

the tail, wy. computing the energy density contribution of the TP modes,
within a few orders of magnitude of the Planck mass during

dependent frequency, at the level of the equation of motion The TDE model was motivated by the closed string theory

modified in the high energy regime. It is difficult to do so natures. Some of the distinctive features of the TDE model
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are the predictions thfthe change in sign of the decelera- APPENDIX
tion parameterg=0, occurs at the same time as the start of
tail dominance, i.e., the time at which the tail energy is half
of the total,aq=ape ; this accelerated expansion occurs in a
very short amount of time; due to the viscous pressure ef- We have a time translation Killing vector for future infin-
fects, the matter contribution from the TP modes goedty that determines our outgoing positive frequency modes.
through a change of its equation of state such that it starts te€t us consider our Universe as an expanding box, with size
decay faster than normal matter. The latter effect shortens tHe=a/M, filled with modes. Inside this box we have a
time the Universe takes to change the parameters frordmaller box with fixed sizd,=1/M that determines the
Wiota=—1/30=0 to the time whenWw,,,=—1p0tal range for the trans-PlanckiaTP) modes. There is a pre-
=py. To arrive at these numbers, we ignored other matteferred frame attached to the small b@ue to the breaking of
sources as well as the short-distance corrections to the equisorentz invariance by the short-distance modast Lorentz
tions of statgw;) that present as inverse powers of the scaldnvariance is restored in the big box, the expanding Universe.
factor,0(1/a"). Perhaps these corrections may be importantFollowing along the arguments and derivation in Réf]

in terms of delaying the time the tail takes to behave as darkor the “particle” distribution function, it is straightforward

energy,Vsz — 1. These features can be scrutinized in futuret© apply 'ghelr expression to our model. Below we anSIder

work [20]. three regimes depending on the value of momenguwith
spect to the cutoff scald:

(i) p/M <1, the “normal regime.” In this regime the fre-

quency of the modes becomes linear,

1. Distribution function for the linear, crossover,
and trans-Planckian regime

Note addedThe results obtained in this paper for the tail re

equation of stateyy, , differ from those reported by Lemoine
et al. [21]. The fact that we include the curvature teafia
under the definition of the generalized frequene3; while w[p]zpe—P/MHp,,\,l<1 p. (A1)
they keep the two contributions separate, is not the only

source of discrepancy. There are fundamental differences b&he wavelength of these modes is thes O(L)>1p.

tween the two studies. Authors of Rg21] ignore the crucial (i) p/M=0(1), the crossover or intermediate regime,
effects of the out-of-equilibrium dynamics and the breakingduring which the TP modes go from the “TP box” with fixed
of Lorentz invariance, by the nonlinear short-distance modessize | ,.=1/Mp into the “big box” with size L=a/M. This
when carrying out their calculation fgry andpy . In their  process occurs due to the redshifting of the modgs,
approach these effects would be contained in the dynamicsk;/a. Each modep; will crossover and become a “normal
of the vector fieldu, described by a Lagrangiafy, for this  mode” at some timea;=k; /M.

field. Obviously, the choice oti, field dynamics and its (i) p/M>1, the TP regime, such thax=1/k<lp
LagrangianL, strongly depend on the details of the short- =1/M.

distance nonlinear model considerethe expression foL,, We do not report the derivation of the distribution func-
that these authors borrow from the Corley-Jacob88d  tion since the reader can find it in detail in REE6]. In what
model[7] is consistent only with the dispersion function of follows we apply it to our case, to lend support to our as-
the CJ modefor stationary backgrounds, since balf,, and  sumption that the TP modesjodes in the small box with
the terms given by, contain up to fourth order derivatives, fixed size }=1/M with respect to the preferred framare
together with the antisymmetric tensbr,,. Therefore,L,  not in thermal equilibrium, while modes in the range of the
gives zero corrections tgy, py when applied to the linear regime(modes in the big box with sizeda/M, where
Friedmann-Lemane-Robertson-Walker  Universe(where  Lorentz invariance is restored, the FRW Universee in
clearly the antisymmetric tensor vanishes identicall¥1g) nearly thermal equilibrium:

and hence, higher order countertermg,X" in £, are ig-
nored, while at the same time if},, they have a series of all
higher order derivative terms, up te—o°. It is easy to check
whether they break the energy conservation law and Bianchi

identity by plugging in the energy conservation equation toThe indexin (out) refers to the incomingoutcoming

(win)Ug(pin) 2

(wout)vg(pout)

Bp

Mw)= - (A2)
p

their expression fop andp in their Egs.(35) and (36): modes as defined in ReR]; vy is the group velocity,
{p)+3H((p+p))#0, (54) do
vg(p)= ap’ (A3)

which we suspect is due to the aforementioned reasons.

and 8,, a, are the Bogoliubov coefficients, which in our
model do not depend on the momentpri2]. The dispersed

It is a pleasure to thank L. Parker for valuable discussiondreguency is given in Eq4), and thus
during L.M.’s visit to UWM. We would also like to thank D.
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Grasso for helpful discussions. log(Pin)| = @inly M_m , (A4)
Pin
8These predictions are in the absence of other matter sources. Ug(Pou =1, (A5)
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since w(Pour) =Pout- The phase velocity is defined as
= w/p. Therefore
2

Bol”, —omp p
| (e PMp) ik (AB)

@p

efp/MP

Mw)= 1—

The thermal distribution is immediately recovered in the

limit p/M<1, i.e.,vy—1 andw(p)—p.
Now we can evaluate the distribution function for the dif-
ferent regimes above:
(i) In this case
2
Nm{ﬁ , (A7)
ap

as it should, since we recover in tloit region the normal
linear frequency for the modep/M <1 andv,=1.

(ii) In the intermediate crossover regimg/,M=0(1),
we have
e72
- E eBw_ 1

Np(w , (A8)

where we have identified the inverse of temperatdrea
and the linear term ip/M with

1 j—
Bo=1"pm "~

M
aM—k’

B=a. (A9)

QD

Clearly in this regime|vy| goes to zero, anw goes to
infinity. The spectrum is nearly thermal, howevev(w)

PHYSICAL REVIEW D57, 103519 (2003

terms of creation and annihilation operators. The distribution
function, Eq.(A10), justifies our assumptions of deviation
from thermal equilibrium in the TP regime.

2. Averaging of the TP energies, pressure,
and equation of state

We have shown that modes in the TP regime of such very
short wavelengthnp<<lp are out of thermal equilibrium.
Thus we need to average their effective contribution to the
energy and pressure over many wavelengths, in order to ob-
tain a nearly thermal, large scale state. This averaging is
done over many wavelengths since, clearly, scales of cosmo-
logical order that are of interest to us are much much longer
than any TP wavelengths. In what follows, we are interested

in finding the averaged bare quantitigs) and(p;) before
including any modificatiodl;. The viscous pressure modi-
fications,II;, occur due to the freeze-out and the change in
the number of particles and are accounted for separately in
Sec. Il. Therefore region Il will be grouped together with
region H, since both have a highly dispersed TP frequency
and, for the moment, we ignore the freeze-out corrections.
Approximately we can write the energy of regioi@s-1) and
(Il+H) in one compact form to avoid repetition:

M
p=p*'O(M—p)+ 5-p’e” PMOEI —(A12)

where® (p— M) is the unit step function that takes the value
O(p—M)=1 for p>M and zero otherwise. Clearly, for

goes to zero, since as seen from the TP box the group velognodes withp/M>1 we getp,, (py). And for modesM

ity of these modes as they approgei M becomes zero; or

>p we get the radiation energy density of ttmearly) linear

as seen from the normal particles in the big box, these modesodes.

have a high frequencye(~M), thus they do not contribute
very much to the energy of modes (in.
(iii) However, in the TP regime the distribution function

strongly deviates from that of thermal equilibrium, since in

this casevy(in)# 1, and the frequency is highly nonlinear:

p
1-,

C
Ne(w)= 5 |e"PM|e~?M

(A10)

with p/M>1. Neverthelesd/;(w)— 0 whenp/M — o, thus

their contribution to the energy is suppressed. The suppres-

sion comes directly from the frequenay(p)=pe "M in
this case.
The volume element in momentum spadd/,, for the

dispersed “particles,” whose world line intersects a hyper-

surface elemend?, aroundx, having momenta in the range
(p,p+dp), is de=25(pMp“)dp4, where p is future di-
rected. Based on the definition of R¢fl6] for the inner
product of the fields ¢[ '], #[ ~']) and integrating over the

in

entire mass shell, the three-volume in momentum space is

given by

dVs;=a%|—|dp, (A11)

1
Ug

Using the energy conservation lagwhile ignoring the
freeze-out effects

pdp p(dps dp; — —
P+P—§d—p—§<d—p+d—p>—(Pl+p1)+(Pz+pz),
(A13)
with
M
p1=?pse_p/M, p>M, (A14)
p2=p*,  p<M. (A15)
And from Eq.(A13) we find
P ks
W1 p———w®(k3—aM), (A16)
p, 1
Wz—z—g. (Al?)

which is consistent with the quantum field theory expres-lt is clear from the previous section that since {inearly
sions of currents and “particle” number densities, given inlinear modesp,, are nearly in thermal equilibrium then we
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do not need to bother with the averaging procedure for them

(one can, however, check to verify the resQ,)=1/3).
This is not the case for the modes withM > 1, since these

PHYSICAL REVIEW D67, 103519 (2003

_(py) 1

<W1>—@— = 3 (A20)

short wavelengths are out of equilibrium. Let us calculate

<51> (p1), and(wy):

a 2 a* =k/IM 2
piacda piacda
0

()= 0 . 14M4a*3
P1 faazda S a3 1(‘£a3 .
0
(A18)
Similarly,
a_ a* =k/IM—
fpazda f pa’da
(= =3~ o)
1 Ja o 23 20a 1
a’da
0
(A19)

where in Planck unitg* =1, and we have used the normal-
ization that Planck length,=1/M=a*=a(tp)=1. The
time a* corresponds to the crossover time at which the
wavelength of the TP modes is on average of order of the
size of the small boxp(a*)=M. This time scale of order of
the Planck box is much smaller than scales of cosmological
interest,L=a/M. External observers bound to the large
scale, the Lorentz invariant Universe with sizeea/M and

in thermal equilibrium, “feel” the energy and pressure con-
tributions from the TP modes given by E@10).

Of course the real equation of state for these modes is
given by their effective equation of state;, Sec. Il, that
takes into account the relativistic kinetic theory modifica-
tions due to the freeze-out. In a similar manner, one can
obtain{w,) and in particular the numerical coefficieftfor

(W)),p1 .0 -
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